Chem. Ber. 108, 1630-1641 (1975)

Organometallphosphin-substituierte Übergangsmetallkomplexe, XVIII 1)

Tricarbonyl(organometallphosphin)nickel(0)-Komplexe

Herbert Schumann*, Lutz Rösch, Heinrich Neumann und Heinz-Jürgen Kroth

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, D-1000 Berlin 12, Straße des 17. Juni 135

Eingegangen am 7. November 1974

Tetracarbonylnickel reagiert mit Tri(tert-butyl)phosphin (1), Di(tert-butyl)trimethylsilyl- (2), -germyl- (3), -stannylphosphin (4), tert-Butyl-bis(trimethylsilyl)- (5), -(germyl)- (6), -(stannyl)phosphin (7) sowie mit Tris(trimethylsilyl)- (8), -(germyl)- (9) und -(stannyl)phosphin (10) unter Abspaltung eines CO-Liganden und Bildung entsprechender Tricarbonyl(organometallphosphin)nickel(0)-Komplexe 1 a - 10 a. Die Infrarot-, Raman-, ¹H-NMR- und ³¹P-NMR-Spektren werden mitgeteilt und diskutiert.

Organometalphosphine-substituted Transition Metal Complexes, XVIII 13 Tricarbonyl(organometalphosphine)nickel(0) Complexes

The reaction of tetracarbonyl nickel with tri(tert-butyl)phosphine (1), di(tert-butyl)trimethylsilyl-(2), -germyl- (3), -stannylphosphine (4), tert-butyl-bis(trimethylsilyl)- (5), -(germyl)- (6), -(stannyl)-phosphine (7) as well as with tris(trimethylsilyl)- (8), -(germyl)- (9) and -(stannyl)-phosphine (10) results in the elimination of one CO-ligand and the formation of corresponding tricarbonyl-(organophosphine)nickel(0) complexes 1a-10a. The i.r., raman, 1H n.m.r., and ^{31}P n.m.r. spectra are reported and discussed.

Während Triorganophosphine verhältnismäßig starke Lewis-Basen darstellen, ist das basische Verhalten von Organometallphosphinen weitaus weniger ausgeprägt. Diese Abnahme der Basizität bei Organosilyl-, -germyl- und -stannylphosphinen weist scheinbar darauf hin, daß das freie Elektronenpaar am Phosphor nicht mehr zur Verfügung steht und bei diesen Verbindungen im Sinne einer $(p \to d)_{\pi}$ -Wechselwirkung mit in die Bindung zwischen Phosphor und den Metallen der IV. Hauptgruppe einbezogen ist. Die meisten chemischen Reaktionen der Organometallphosphine scheinen diese These zu stützen 2). Auch die Tatsache, daß es gelingt, Organometallphosphine als σ -Donatoren in Übergangsmetallcarbonylkomplexe einzubauen 2) spricht a priori aufgrund der besonderen Bindungsverhältnisse in derartigen Komplexen nicht gegen obige Bindungsvorstellung. Man kann jedoch erwarten, daß Übergangsmetallcarbonylkomplexe mit Organometallphosphinen als Liganden sich in ihren chemischen und spektroskopischen Eigenschaften bei Vorliegen einer $(p \to d)_{\pi}$ -Wechselwirkung zwischen Phosphor und den IVb-Elementen stark unterscheiden, je nachdem, ob am Phosphor ein, zwei oder drei organische Reste

¹⁾ XVII. Mitteil.: H. Schumann und J. Opitz, J. Organomet. Chem. 85, 357 (1975).

²⁾ H. Schumann, Angew. Chem. **81**, 970 (1969); Angew. Chem., Int. Ed. Engl. **8**, 937 (1969).

durch Organometallsubstituenten ersetzt werden. Zur Überprüfung dieser Frage untersuchten wir eine systematische Reihe von monosubstituierten Übergangsmetallcarbonylkomplexen. Hier sei über Tricarbonylnickel(0)-Komplexe mit Trimethyl-Element IVb-phosphinen als viertem Liganden am Nickel berichtet ³⁾.

Darstellung und Eigenschaften

Durch Umsetzung von Tetracarbonylnickel mit Tri(tert-butyl)phosphin (1), Di(tert-butyl)trimethylsilyl- (2), -germyl- (3), -stannylphosphin (4), tert-Butyl-bis(trimethylsilyl)- (5), -(germyl)- (6), -(stannyl)phosphin (7) sowie Tris(trimethylsilyl)- (8), -(germyl)- (9) und -(stannyl)phosphin (10) in wasserfreiem Tetrahydrofuran oder Pentan unter Schutzgasatmosphäre bei 25°C wird eine CO-Gruppe der Ausgangsverbindung durch das Phosphin ersetzt:

$$(CO)_4Ni + \{(CH_9)_3C\}_3P \longrightarrow (CO)_3Ni-P\{C(CH_3)_9\}_3 + CO$$
 (1)

Durch Abkühlen der Reaktionslösung auf $-70\,^{\circ}$ C erhält man die Verbindungen 1a-10a in nahezu quantitativen Rohausbeuten in Form farbloser Kristalle, die durch Waschen mit kaltem Pentan und anschließende Sublimation bei 10^{-4} Torr und $25\,^{\circ}$ C gereinigt werden können. Die Verbindungen sind im Vergleich zu den freien Phosphinen alle erheblich beständiger gegen Luftsauerstoff und lösen sich gut in Benzol. Beim Stehenlassen unter Lichteinwirkung und bei Zutritt von Sauerstoff zersetzen sie sich innerhalb einiger Tage unter Nickelabscheidung.

³⁾ Über einen Teil dieser Verbindungen haben wir schon früher berichtet; da es damals jedoch nicht möglich war, sämtliche hier besprochenen spektroskopischen Daten zu erhalten, war eine Neudarstellung notwendig; siehe H. Schumann, O. Stelzer, U. Niederreuther und L. Rösch, Chem. Ber. 103, 1383 (1970).

Spektroskopische Untersuchungen

Schwingungsspektren

Die IR-Spektren der Verbindungen 1a-10a wurden in Nujolsuspension (250 bis 4000 cm⁻¹), die Ramanspektren in Substanz aufgenommen. Die gefundenen Banden sind in den Tabellen 1-3 aufgeführt und weitgehend zugeordnet. Zusätzlich wurde der Bereich der CO-Valenzschwingungen in Pentanlösung vermessen (Tab. 4), im Ramanspektrum waren hierbei auch Polarisationsmessungen möglich.

Tab. 1. IR-Absorptionen^{a)} und Raman-Emissionen^{b)} der Komplexe 1a, 2a, 5a und 8a (sst = sehr stark, st = stark, m = mittel, s = schwach, Sch = Schulter; Werte in Klammern = geschätzte Intensitäten)

7	1:	<u> </u>		a	5	a	8	2
Zuordnung	IR	RE	IR	RE_	IR	RE	IR	RE
]		3015(0)						2002 (2)
v,CH ₃		2981(0)		2990(0)		2980 Sch		2980(0)
und }		2961 Sch		2962 Sch		2962(0)		2966(0)
v _a ,CH ₃		2910(1)		2903(1)		2902(1)		2905(1)
J	2060-4	2890 Sch	2060-4	2875(0)	2058 st		2059st	
)	2060 st 2050 Sch	2050(1)	2060 st 2050 Sch	2057(1)	2050 Sch	2058(0)	2059 Sch	2059(0)
ı	1980 sst	1987(0)	1978 sst	1975(3)	1978 sst	1975(1)	1980sst	1974(1)
vCO }	1900330	1970(3)	1770330	1373(3)	1770330	13/3(1)	1700330	17/4(1)
i i		1963(3)						
J	1947 m	1935(0)	1948 m		1947 m		1935 m	
		1473(1)		1481(1)				
)		1460(1)		1474(1)		1462(0)		
δСН₃		00 (-)		1460(1)		1449(0)		
und				()		` '		1410(0)
v _{as} CC ₃ { und }		1394(0)						
pCH ₃		1370(0)		1378(0)	1262 st		1262 Sch	
70113		4400(0)	1250 st		1249 st	1251(0)	1249 st	
	1171	1198(0)	1172			1200(0)		
	1171 m	1180(1) 1168 Sch	1172 m		1171 m	1200(0) 1175(0)		
	1022 m	1023(0)	1028 m	1015(0)	1016 m	1018(0)	1025 s	
J	931 m	923(0)	930 s	929(0)	929 s	933(0)	10233	
,	,,,,,	(-)	840 st	(-)	850 Sch	(-)	865 Sch	
ρCH ₃ (Si)			0,7000		835 sst		840 sst	
F 5113(51)							822 Sch	
v _s CC ₃	807 m	809(1)	810 m	809(1)		813(0)		
ρCH ₃ (Si)		, ,	750 m		750 m	754(0)	752 s	758(0)
vasSiC3			685 m	685(0)	687 st	692(1)	688 m	692(0)
v _s SiC ₃			634 m	633(1)	626 st	639(2)	622 m	635(1)
$V_{as}PC_2$, PC_3	593 m	592(0)	590s	588(0)				` '
v ₈ PC ₂ , PC ₃	568 s	571(1)	572 s	570(1)				
vPC		• • •		` '		580(0)		
δΝίΟΟ	482 m	491(1)	485 Sch	496(1)	485 m	492(1)	482 Sch	496(1)
vSiP		(-)	465 m	(-)		(_)		
v. PSi2, PSi3					449 s	459(1)	463 m	468(0)
v. NiC	452s	458(0)	450 s	451(0)	449 s	459(1)	448 m	450(0)
_	430 Sch	427(3)	435 Sch	(3)		(1)	422 Sch	420(1)
v_sNiC_3		(5)	420 Sch	423(2)	425 Sch	428(2)	405 s	405 Scl

Tab. 1	(Fortsetzung)
TAU. I	r oriseizuna)

71	1	a	2	a	5:	1	8	2
Zuordnung	IR	RE	IR	RE	IR	RE	IR	RE
δCC ₃	393 s	401 Sch						
δNiCO	360s	363(1)	365 m	363(1)	365 m	370(1)	365 m	368(0)
$\delta_s PC_3$		300(1)	310s	300(0)		309(0)		
ρCC_3 δPC_2			275s		295 m 278 Sch	, ,	295 m 260 s	300(0)
δ_{1} PC ₃		262(0)	2138		276 SCII		2003	
Uasi C3		` '						
		238(0)						
$\delta_{ns}SiC_3$				238(0)		239 Sch		241 Sch
$\delta_s SiC_3$						219(1)		218 Sch
v NiP?		211(1)		192(0)		185(1)		196 Sch
δ		168(1)		174(1)				188(10)
und		138(2)		155(0)				173 Sch
$\delta_{s}PSi_{3}$	•	104 Sch		118 Sch		99 Sch		90 Sch
und δ NiC ₃		84(10)		75(10) 48(10)		75(10)		75(10)

^{e)} Perkin-Elmer-Infrarot-Spektrophotometer 457 in Nujolsuspension zwischen CsJ-Platten. Die Bereiche der Absorptionen des Nujol sind ausgespart.

b) Raman-Spektrophotometer Cary 82, in Substanz, Krypton-Laser, Spectra-Physics, 647.1 nm.

Tab. 2. IR-Absorptionen a) und Raman-Emissionen b) der Komplexe 3a, 6a und 9a (sst = sehr stark, st = stark, m = mittel, s = schwach, Sch = Schulter; Werte in Klammern = geschätzte Intensitäten)

7	3	2	6	a	9	a
Zuordnung	IR	RE	IR	RE	IR	RE
v _{as} CH ₃ und v _s CH ₃		2906(1)		2965(0) 2912(1) 2882(Sch)		2979(0) 2913(1) 2800(0)
)	2059 st 2050 Sch	2058(1)	2060 st 2050 Sch	2058(1)	2059 st 2049 Sch	2056(0)
vCO }	1980sst	1979(3) 1972(3)	1979 sst	1975(3)	1980 sst	1972(1)
	1948 m	, ,	1948 m		1948 m	
,		1470(1)				1471 (0)
δCH ₃ und		1464(1)		1463 (0) 1444 (0) 1410 (0) 1363 (0)		
v _{as} CC ₃ { und }	1245s	1240(1)	1242 Sch	1249(0)	1242 s	1253(0)
ρCH ₃	1232 s 1170 m 1015 s 930 s	1173(1) 1020(0) 933(1)	1232 m 1170 s 1015 s	1235(0) 1173(0) 1018(0)	1235 m	1237(0)
ρCH ₃ (Ge)	835sst		830sst		825 Sch 816 sst	842(0)
v _s CC ₃	808 Sch	808(2)	818 Sch	813(0)		
v _{as} GeC ₃ , v _s PC ₂ vPC	590 m	592(3)	596st	599(3) 581 Sch	600 st	602(3)

Tab. 2 (Fortsetzung)

7	3 8	ı	68	ı	9 :	ì
Zuordnung	IR	RE	IR	RE	IR	RE
v _s GeC ₃ , v _s PC ₂	565 m	572(4)	563 s	570(5)	562 m	573(6)
δΝίΟΟ	480 Sch	487(2)	484 s	490(1)	480 s	489(1)
$v_{as}NiC_3$	460 Sch 449 st	465(1)	450 st 445 Sch	454(Sch) 442(Sch)	452st	463 (0) 457 (0)
v _s NiC ₃	430 Sch	427(5)	420 Sch	424(2)	420 Sch	419(2)
δCC ₃		407(Sch)		414(Sch)		
v GeP, vasGe2P, vasGe3P		366(2)		380(Sch)		379(0)
δΝίΟΟ	359 m	366(2)	360 m	364(1)	360 m	365(1)
δCC ₃		331(0)				
δPC ₂		297(0)				
δCPGe ₂				248(Sch)		
vNiP?		224(3)		204(6)		198 Sch
δ_{aa} GeC ₃		162(3)		169(3)		169(6)
δ _s GeC ₃				151 (Sch)		145(3)
δCPGe ₂				123(4)		
δ , δ PGe ₂ , δ PGe ₃		100(Sch)		93(Sch)		99(6)
δNiC ₃		78(10)		72(10)		75(10)
		43(0)				

a, b) s. Tab. 1.

Tab. 3. IR-Absorptionen a) und Raman-Emissionen b) der Komplexe 4a, 7a und 10a (sst = sehr stark, st = stark, m = mittel, s = schwach, Sch = Schulter; Werte in Klammern = geschätzte Intensitäten)

	4	a	7	8	1	0 a
Zuordnung	IR	RE	IR	RE	IR	RE
)		2968(0)				2992(0)
VasCH ₃		2933(0)		2919(1)		2920(1)
und }		2840(1)		2960(Sch)		
v _s CH ₃		2808 (Sch)		2867(0)		
٠ ,				2807(0)		
}	2060 st	2058(1)	2060 st	2055(0)	2058 st	2052(0)
1	2050 Sch		2050 Sch			
vCO }	1980sst	1980(Sch)	1982 sst	1975(1)	1982 sst	1977(Sch)
		1975(2)				1967(1)
)	1948 m		1948 m		19 5 5 m	
)		1469(0)				
		1459(0)		1462(0)		
1		1445(0)				
δСН		1366(0)				
und		1204(Sch)		1202(1)		
v _{as} CC ₃	4450	1192(1)	4450	1191(1)	4400	1196(1)
und	1170m	1175(Sch)	1170s	1020(0)	1180s	
ρCH ₃	1015s	1018(0)	1015s	1020(0)		
· •	930s 810s	931(0)	930 m 810 Sch	915(0)		
	770sst	811(1)	768 sst	815(0)	750sst	776(0)
]	770881		612s		130881	770(0)

Tah	3	(Fortsetzuna)
I av.	J	I UI LIELLUILU I

7	4:	a .	7:	a	16) a
Zuordnung	IR	RE	IR	RE	IR	RE
v _{as} PC ₂ , v PC	592s	594(0)		577(1)		
$v_{s}PC_{2}$	570s	574(0)				
$v_{as}SnC_3$	522 m	523 (3)	525 st	528(4)	524st	528(6)
v _s SnC ₃	508 s	509(4)	505 m	511(7)	502 st	509(10)
δNiCO	470 Sch	482(1)	482s	489(Sch)	482 Sch	487(1)
v _{as} NiC ₃	450 st	459(0)	450st	453(0)	448 st	455(0)
v _s NiC ₃	426 Sch	425(2)	430 Sch	425(2)	426 Sch	423(1)
δCC ₃		389(0)		403 (Sch)		
$v_{as}PSn_{2/3}, vPSn, \delta NiCO$	358 m	362(1)	355 m	358 (2)	342st	348(3)
v.PSn ₂				338(0)		
δPC ₂ Sn }		299 (0) 249 (Sch)				
vNiP?		220(1)		188(4)		165(Sch)
$\delta_{as}SnC_3$		159(4)		156(Sch) 151(Sch)		149(6) 140(Sch)
δ _s SnC ₃		126(2)		145(Sch)		130(Sch) 115(Sch)
δ		94(Sch)		104(5)		90(6)
δNiC ₃		77(10)		69(10)		72(8)

a. b) s. Tab. 1.

Tab. 4. CO-Valenzschwingungen der Komplexe 1a - 10a, vermessen in Pentanlösung (p = polarisiert, dp = depolarisiert)

Verbindung		A	۸,		E
Ver omdung		IR	RE	IR	RE
$(CO)_3NiP\{C(CH_3)_3\}_3$	(1 a)	2062	2062 p	1983	1986 dp
$(CO)_3NiP\{C(CH_3)_3\}_2\{Si(CH_3)_3\}$	(2a)	2060	2062 p	1983	1987 dp
$(CO)_3NiP\{C(CH_3)_3\}\{Si(CH_3)_3\}_2$	(5a)	2060	2062 p	1983	1986 dp
$(CO)_3NiP{Si(CH_3)_3}_3$	(8a)	2060	2061 p	1985	1986 dp
$(CO)_3NiP\{C(CH_3)_3\}_2\{Ge(CH_3)_3\}$	(3a)	2062	2062 p	1983	1987 dp
$(CO)_3NiP\{C(CH_3)_3\}\{Ge(CH_3)_3\}_2$	(6 a)	2062	2062 p	1987	1987 dp
$(CO)_3NiP\{Ge(CH_3)_3\}_3$	(9 a)	2060	2062 p	1980	1988 dp
$(CO)_3NiP\{C(CH_3)_3\}_2\{Sn(CH_3)_3\}$	(4 a)	2062	2061 p	1983	1987 dp
$(CO)_3NiP\{C(CH_3)_3\}\{Sn(CH_3)_3\}_2$	(7 a)	2063	2061 p	1987	1988 dp
$(CO)_3NiP\{Sn(CH_3)_3\}_3$	(10 a)	2061	2062 p	1986	1988 dp

Wird in Tetracarbonylnickel eine CO-Gruppe durch einen anderen Liganden L ersetzt, so wird die ursprünglich vorhandene Tetraedersymmetrie auf eine, in bezug auf das Nickelatom gesehen, Lokalsymmetrie der Punktgruppe C_{3v} erniedrigt. Hierfür kann man in diesem Fall zwei CO-Valenzschwingungen (Klasse A₁, Klasse E) erwarten, die beide sowohl infrarot- als auch ramanaktiv sind. Dies trifft auch für die in Pentanlösung

aufgenommenen Spektren zu (Tab. 4). Dabei besitzt die kürzerwellige Bande sowohl im IR als auch im Raman stets geringere Intensität als die längerwellige, verschwindet jedoch bei der Polarisationsmessung nahezu vollständig und kann daher zweifelsfrei als A₁-Bande zugeordnet werden. Die längerwellige Bande (E) zeigt hingegen, wie zu erwarten, einen Polarisationsgrad von ca. 3/4. Sowohl in Substanz (Raman) als auch in Nujolsuspension (IR) sind hingegen wesentlich mehr Banden zu beobachten. Diese Aufspaltungen werden vermutlich durch den Kristallbau hervorgerufen.

Für Rückschlüsse auf die Bindungsverhältnisse in den Komplexen eignen sich bevorzugt die Spektren der Pentanlösung, da man hier annehmen kann, daß die einzelnen Moleküle nur wenig von ihrer Umgebung beeinflußt werden. Ein Vergleich der Werte in Tab. 4 zeigt, daß bei allen zehn Verbindungen die beiden beobachtbaren Banden in ihrer Lage, innerhalb der Meßgenauigkeit, konstant bleiben. Ein Unterschied in den Bindungsverhältnissen der Komplexe, der auf einen Unterschied in den Bindungsverhältnissen der Liganden hinweisen würde, kann daher nicht festgestellt werden.

Aufgrund der konstanten Lage der CO-Valenzschwingungen kann man annehmen, daß auch die restlichen Schwingungen des Tricarbonylnickelteiles bei allen zehn Verbindungen in ihrer Lage nur wenig differieren. Tatsächlich findet man auch durchweg im Bereich von $480-350\,\mathrm{cm}^{-1}$, neben anderen Absorptionen, ein charakteristisches Muster von 4 Banden, die im Vergleich zu den von Bigorgne et al. zugeordneten und berechneten Spektren der Tricarbonylnickelkomplexe von Phosphin, Trimethylphosphin, Trifluorphosphin und Trimethylphosphit 4-7) den Nickel-Kohlenstoff-Valenzschwingungen und Nickel-CO-Deformationen zugeordnet werden können. Ebenfalls ohne Schwierigkeit gelingt die Zuordnung der Nickel-Kohlenstoff-Deformationsschwingung, die als überaus intensive Bande bei ca. 80 cm⁻¹ im Ramanspektrum erscheint.

Die Zuordnung der Schwingungen der Liganden durch Vergleich mit den Spektren der freien Phosphine⁸⁾ gelingt nur teilweise. Die Schwingungen der CH₃-Gruppen sowie die Phosphor-Kohlenstoff- und Element IVb-Kohlenstoff-Valenzschwingungen zeigen in bezug auf die freien Phosphine nur geringe Veränderungen. Die in Tab. 5 aufgezeigte geringe Beeinflussung der Lage der Element IVb-Kohlenstoff- und Phosphor-Kohlenstoff- Valenzschwingungen durch die Komplexierung deutet darauf hin, daß auch die Phosphor-IVb-Bindungen nur wenig verändert werden. Eine Zuordnung der hierzu gehörigen Schwingungen stößt jedoch auf große Schwierigkeit, da in dem Erwartungsbereich dieser Banden von 460–280 cm⁻¹ Schwingungen des Ni(CO)₃-Bausteines sowie Deformationsschwingungen der *tert*-Butylgruppen und der Phosphor-Kohlenstoff-Gruppen auftreten. Daneben sind auch noch Kopplungen mit den in diesem Bereich auftretenden Schwingungen möglich.

Für die Nickel-Phosphor-Valenzschwingung gibt Bigorgne⁴⁾ einen Bereich von 178 bis 295 cm⁻¹ an, Verkade⁹⁾ einen solchen von 143-157 cm⁻¹. Da in unserem Falle der Phosphor aufgrund seiner schweren Substituenten eine relativ große wirksame Masse besitzt, nehmen wir an, daß die Nickel-Phosphor-Valenzschwingung im Bereich von

⁴⁾ M. Bigorgne, A. Loutellier und M. Pankowski, J. Organomet. Chem. 23, 201 (1970).

⁵⁾ A. Loutellier und M. Bigorgne, J. Chim. Phys. 67, 78 (1970).

A. Loutellier und M. Bigorgne, J. Chim. Phys. 67, 99 (1970).
 A. Loutellier und M. Bigorgne, J. Chim. Phys. 67, 107 (1970).

⁸⁾ H. Schumann und L. Rösch, Chem. Ber. 107, 854 (1974). 9) J. G. Verkade, Coord. Chem. Rev. 9, 1 (1972/73).

IJ der Komnlexe (K) und der freien Phosphine (I.)

(Es sind die Mittelwerte	sind die Mittelwerte		IS IR and F	kaman ang	aus IR and Raman angegeben. $\Delta_1 = v_s MC_3(L) - v_s MC_3(L) + v_s MC_3(L) - v_s MC_3(R)$, $\Delta_2 = v_s MC_3(L) - v_s MC_3(R)$, $\Delta_3 = v_s PC(L) - v_s PC(R)$, $\Delta_4 = v_s PC(R) + v_s PC(R)$	= v,MC ₃ (L v,PC(L	"MC ₃ (L) – v"MC ₃ (K), v"PC(L) – v"PC(K))	$(K), \Delta_2 = v_1$ $(K))$	MC ₃ (L) -	- var MC3(K	$(a, \Delta_3 = v_s P)$	C(L) – v,P	$C(K), \Delta_4 =$
Verhindung				× ×	₫C₃					٧F	ıo		
	8	v,(K)	v,(L)	Δ_1	Δ_1 $v_{ns}(K)$	vas(L)	Δ2	v _e (K)	v.(L)	Δ3	v(K)	v ₂₀ (L)	Δ.
1, 1	18							569.5	564	-5.5	592.5	591	-1.5
2, 2	æ	633.5	631	-2.5	685	684	11	571	571	0	289	290	+1
3, 3	ě	568.5	265	-3.5	591	587.5	-3.5	568.5	899	-0.5	591	290	-1
4,	4a	508.5	505	-3.5	522.5	517.5	-5	572	899	4-	593	290	-3
, S,	œ.	632.5	634	+1.5	689.5	685.5	4	280	578	-2			
6, 68	œ	566.5	999	-0.5	597.5	593.5	4-	581	582	+1			
7, 7a	•	508.5	207	-1.5	526.5	522	-4.5	277	277	0			
8, 8	=	628.5	630.5	+ 2.0	069	689	-1						
9, 98	_at	567.5	564	-3.5	601	594							
10, 10a	æ	505.5	508.5	+3	975	523	-3						

149 – 220 cm⁻¹ auftritt. Die in den Tabellen getroffenen Zuordnungen können jedoch nur als Vorschlag angesehen werden, da in diesem Bereich mehrere Deformationsschwingungen, insbesondere die Element IVb-Kohlenstoff-Deformationsschwingungen auftreten und dadurch Bandenüberlagerungen auftreten. Auch ist insbesondere im Falle der Zinnverbindungen eine Kopplung mit Phosphor-Zinn-Valenzschwingungen nichtauszuschließen.

Aus den gleichen Gründen ist es auch nur sehr schwer möglich, die Deformationsschwingungen des inneren Gerüstes am Phosphor zuzuordnen.

¹H-NMR-Spektren

Die Aufnahme der ¹H-NMR-Spektren der Komplexe 1a – 10a erfolgte an ca. 10 prozbenzolischen Lösungen. Unser besonderes Interesse galt hierbei den Kopplungskonstanten $J(^1\text{H-C-C-}^{31}\text{P}) = J(\text{I})$ bzw. $J(^1\text{H-C-E-}^{31}\text{P}) = J(\text{II})$, deren Werte in Tab. 6 unter $J_K(\text{I})$ und $J_K(\text{II})$ angegeben sind; zum Vergleich sind die entsprechenden Werte $J_L(\text{I})$ und $J_L(\text{II})$ für die freien Phosphine aufgeführt. Änderungen von Kopplungskonstanten spiegeln in etwa Änderungen der Bindungsverhältnisse wieder. Wie aus Tab. 6 ersichtlich, werden in allen Fällen beide Kopplungskonstanten beim Übergang vom freien Phosphin zum entsprechenden Komplex größer. Bildet man den Quotienten $\frac{\Delta J}{J_L} = \frac{J(\text{Komplex}) - J(\text{Ligand})}{J(\text{Ligand})}$, so eliminiert man dadurch den unterschiedlichen Einfluß der verschiedenen E(CH₃)₃-Gruppen und erhält eine spezifische Größe für die mit der Komplexierung verbundene Änderung der Bindungsverhältnisse unmittelbar am Phosphor.

Tab. 6. Kopplungskonstanten $J({}^{1}HCC^{31}P) = J(I)$ und $J({}^{1}HCE(IVb)^{31}P) = J(II)$ der Komplexe (J_{K}) und der freien Phosphine (J_{L}) . Angaben in Hz

Verbindung	$J_{K}(I)$	$J_{\rm L}({ m I})$	$\frac{\Delta J}{J_{\rm L}}$ (I)	$J_{K}(II)$	$J_{\rm L}({ m II})$	$\frac{\Delta J}{J_{\rm L}}$ (II)
1, 1a	11.8	9.6	0.229			
2, 2a	13.0	11.0	0.182	4.25	3.3	0.288
3, 3a	13.6	11.0	0.236	3.6	2.6	0.385
4, 4a	13.2	11.4	0.158	2.6	1.4	0.857
5, 5a	14.2	11.6	0.224	4.6	4.0	0.150
6, 6a	14.7	11.9	0.235	4.3	3.3	0.303
7, 7a	15.6	12.2	0.279	2.7	1.7	0.588
8, 8a				5.25	4.4	0.193
9, 9a				4.65	3.7	0.257
10, 10a				3.35	1.9	0.763

Ganz allgemein nimmt der s-Charakter der Bindungen am Phosphor bei der Komplexbildung aufgrund der Erhöhung der formalen positiven Partialladung und der gleichzeitig erfolgenden Umhybridisierung in Richtung auf $\rm sp^3$ am Phosphor zu. Über das relative Ausmaß dieser Zunahme kann nur ein Vergleich der $\Delta J/J_L$ -Werte Auskunft geben. Bei den hier aufgeführten Verbindungen ergeben sich dabei naturgemäß zwei Reihen für die Änderung des s-Charakters der Bindungen am Phosphor in Korrespondenz zu den 2 verschiedenen Kopplungskonstanten J(I) (Reihe I) und J(II) (Reihe II)

Reihe I: 4 < 2 < 5 < 1 < 6 < 3 < 7

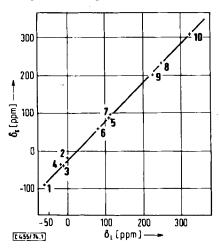
Reihe II: 5 < 8 < 9 < 2 < 6 < 3 < 7 < 10 < 4

Bei Vorliegen einer bedeutsamen $(p \to d)_{\pi}$ -Wechselwirkung zwischen dem freien Elektronenpaar am Phosphor und leeren d-Orbitalen der Elemente Silicium, Germanium und Zinn sollte das s-Elektronenpaar des Phosphors bereits in die Phosphor-Element IVb-Bindung mit einbezogen sein. Als Folge der Komplexierung und der damit erfolgenden Umhybridisierung sollte dann jedoch der s-Elektronenanteil dieser Bindungen erniedrigt werden und der der Phosphor-Kohlenstoff-Bindungen etwas erhöht werden. Daraus ist ein gegenläufiger Verlauf der beiden $\Delta J/J_L$ -Reihen zu erwarten. Dies ist jedoch nicht der Fall. Wie Tab. 6 zeigt sind sowohl J(I) als auch J(II) in den Komplexen stets größer als in den freien Liganden, eine zur Interpretation einer $(p \to d)_n$ -Wechselwirkung sinnvolle Reihenfolge der $\frac{\Delta J}{J_L}$ -Werte kann allerdings nicht aufgestellt werden.

31P-NMR-Spektren

Die 31 P-NMR-Spektren der Komplexe 1a-10a wurden an unterschiedlich konzentrierten Lösungen der Verbindungen in Hexadeuteriobenzol aufgenommen. Die protonenentkoppelten Spektren zeigen erwartungsgemäß ein Singulett als Hauptsignal 10).

Tab. 7. Chemische Verschiebungen der 31 P-NMR-Signale der Komplexe $(\delta_{\rm K})$ und der freien Phosphine $(\delta_{\rm L})$. (\delta-Werte in ppm; 85 proz. Phosphorsäure als externer Standard, Substanzen in Hexadeuteriobenzol). $\Delta = \delta_{\rm K} - \delta_{\rm L}$


Verbindung	$\delta_{\mathbf{K}}$	$\delta_{\mathtt{L}}$	Δ
1, 1a	-90.9	- 62.5	- 28.4
2, 2 a	-20.4	3.2	-23.6
3, 3a	-36.2	-14.3	-21.9
4, 42	-34.8	- 20.7	-14.1
5, 5 a	87.9	108.4	- 20.5
6, 6a	60.4	82.3	-21.9
7, 7a	94.7	111.1	-16.4
8, 8a	232.2	251.2	-19.0
9, 9a	203.8	228.5	-24.7
10, 10 a	306.2	328.6	- 22.4

Seine Lage für die einzelnen Verbindungen ist in Tab. 7 unter δ_K angegeben, zum Vergleich wurden auch die entsprechenden Werte für die freien Phosphine aufgeführt (δ_L) und in Anlehnung an *Grim* et al. ¹¹⁾ nach $\delta_K - \delta_L = \Delta$ die Koordinationsverschiebung berechnet. Dieses Δ kann als Maß für die Änderung der elektronischen Umgebung am Phosphor dienen. Sein Wert variiert bei den hier besprochenen Verbindungen nicht sehr

¹¹⁾ S. O. Grim, D. A. Wheatland und W. McFarlane, J. Amer. Chem. Soc. 89, 5573 (1967).

¹⁰ Im Falle der Silicium- und Zinn-Verbindungen treten noch Satellitenbanden auf, hervorgerufen durch Kopplung mit den NMR-aktiven Isotopen dieser Elemente.

stark. Die Abbildung, in der die δ_K -Werte gegen die δ_L -Werte aufgetragen sind, zeigt mit der resultierenden Gerade, daß bei allen zehn Verbindungen keine grundlegenden Unterschiede in den Bindungen am Phosphor auftreten.

Korrelation von δ_K und δ_L in den ³¹P-NMR-Spektren

Unser Dank gilt der Deutschen Forschungsgemeinschaft, dem Senator für Wirtschaft des Landes Berlin und dem Fonds der Chemischen Industrie für finanzielle Unterstützung dieser Arbeit.

Experimenteller Teil

Darstellung der Verbindungen 1a – 10a: Zu 0.01 mol des Phosphins in 50 ml Pentan oder Tetrahydrofuran werden mit Hilfe einer Spritze vorsichtig 1.71 g (0.01 mol) Tetracarbonylnickel gegeben. Sofort nach der Zugabe wird das Reaktionsgefäß über ein Trockenrohr an einen wassergefüllten Gasometer angeschlossen. Beginnt man nun langsam zu rühren, so spaltet sich unter Aufschäumen

	Tricarbonyl[]nickel(0)	Summenformel (ZersP.)	Mol	Analyse		
			Masse *)	C	H	P
2a	-di(tert-butyl)trimethylsilyl- phosphin-	C ₁₄ H ₂₇ NiO ₃ PSi (75°C)	Ber. 361.1 Gef. 361	46.46 46.8		
3a	-di(tert-butyl)trimethylgermyl- phosphin-	C ₁₄ H ₂₇ GeNiO ₃ P (160°C)	Ber. 405.6 Gef. 398	41.45 40.9		
5a	-tert-butyl-bis(trimethylsilyl)- phosphin-	C ₁₃ H ₂₇ NiO ₃ PSi ₂ (80°C)	Ber. 377.2 Gef. 392	,		
6 a	-tert-butyl-bis(trimethylgermyl)- phosphin-	$C_{13}H_{27}Ge_2NiO_3P$ (130°C)	Ber. 466.2 Gef. 475	33.49 33.4		
7 a	-tert-butyl-bis(trimethylstannyl)- phosphin-	C ₁₃ H ₂₇ NiO ₃ PSn ₂ (110°C)	Ber. 558.4 Gef. 533	27.96 27.6	4.87 5.0	5.55 5.4

Tab. 8. Analysenwerte der Komplexe 2a, 3a, 5a, 6a und 7a

a) Kryoskop. in Benzol.

der Reaktionslösung spontan Kohlenmonoxid ab. Die quantitative Abspaltung von 0.01 mol (224 ml) Kohlenmonoxid kann am Gasometer abgelesen werden, sie dauert ca. 30 min. Beim Abkühlen der Reaktionslösung auf $-70\,^{\circ}$ C fallen die entstandenen Verbindungen in farblosen Kristallen aus, die durch Umkristallisation aus Pentan und anschließende Sublimation bei 10^{-4} Torr und 30 °C weiter gereinigt werden können. Die Rohausbeuten betragen ca. 90 %. In Tabelle 8 sind für die erstmals dargestellten Verbindungen 2a, 3a, 5a, 6a und 7a die Analysendaten aufgeführt. Bei Bestimmung der Schmelzpunkte trat stets Zersetzung ein.

[455/74]